The Sturgeon Bay wellheadprotection project: Delineation of contributing areas for municipal wells in fractured dolomite

K.R. Bradbury, Wisconsin Geological and Natural History Survey, University of Wisconsin-Extension

T.W. Rayne, Hamilton College

Take-home messages

- Bedding-plane fractures form long, continuous flow zones and can be correlated in the subsurface
- A MODFLOW model can simulate these features
- Simulated ZOCs are very large
- Geochemical and isotopic data provide a means of model verification

- Straddle-packer
 tests defined
 conductive zones
- K ranges over 4 orders of magnitude
- Hydraulic head differs by zone

Sequential temperature logs Well DR-265

Sturgeon Bay model grid cutaway

Cross section showing particle tracks

Time = 14.01

Time = 69.13

Time = 100.2

Time = 159.5

Time = 365

Questions

- Is the conceptual model (flow dominated by horizontal fractures) correct?
- Are the model-predicted travel times realistic?
- Can natural tracers help verify travel times?

Hypothesis

- Travel times to the Sturgeon Bay wells are about one year
- There should be an annual signal of variations in T, EC, and ¹⁸O in recharge water
- This annual signal should be detectable in groundwater

Overall Results

Site	statistic	EC, uS/cm	T, °C	¹⁸ O, permil SMOW	² H permil SMOW
Precip	mean	0.07	7.9	-9.14	-62.8
	SD	0.04	9.8	3.45	32.6
DR-339	mean	0.55	8.09	-11.00	-80.51
	SD	0.04	0.03	0.67	6.00
DR-265	mean	2.32	9.10	-10.13	-72.60
	SD	1.35	0.08	0.60	7.81
SB#6	mean	0.89		-10.28	-71.30
	SD	0.06		0.25	1.75

Upgradient – recharge area

Modeling transport

- Simulate movement of water from recharge to city well 6
- Assume conservative tracer; use particle tracking
- Particles (500-1000) released at water table in ZOC of well 6
- Release at low recharge period (Oct) and high recharge period (March)

Low recharge results

- Center of mass arrives in 40 days
- Arrival range 38-44 days

High recharge results

- Center of mass arrives in 8 days
- Arrival range 4-11 days

Some final observations...

- A multi-year, multidisciplinary investigation, -in cooperation with local officials, the water utility, and residents- has resulted in findings that are generally accepted
- Implementation of a wellhead protection plan for Sturgeon Bay is currently underway

Further reading...

Rayne, T.W., K.R. Bradbury, and M.A. Muldoon, 2001. *Delineation of capture zones for municipal wells in fractured dolomite, Sturgeon Bay, Wisconsin, USA*. Hydrogeology Journal, 9: 432-450.

Muldoon, M.A, J.A. Simo, and K.R. Bradbury, 2001. *Correlation of hydraulic conductivity with stratigraphy in a fractured dolomite aquifer, northeastern Wisconsin, USA*. Hydrogeology Journal, 9:570-583.